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0 0K –K mass and decay-width differences: CPLEAR evaluation
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Abstract

0 0Ž . Ž .The CPT-violation parameters Re d and Im d determined recently by CPLEAR are used to evaluate the K –K mass
and decay-width differences, as given by the difference between the diagonal elements of the neutral-kaon mixing matrix

y18 y18Ž . Ž . Ž . Ž . Ž .0 0 0 0 0 0 0 0My i Gr2 . The results – M yM s y1.5"2.0 =10 GeV and G yG s 3.9"4.2 =10K K K K K K K K

GeV – are consistent with CPT invariance. The CPT invariance is also shown to hold within a few times 10y3–10y4 for
many of the amplitudes describing neutral-kaon decays to different final states. q 1999 Elsevier Science B.V. All rights
reserved.

1. Introduction

w xThe CPT theorem 1 , which is based on general
principles of the relativistic quantum field theory,
states that any order of the triple product of the
discrete symmetries C, P and T should represent an
exact symmetry. The theorem predicts, among oth-
ers, that particles and antiparticles have equal masses
and lifetimes. The CPT symmetry has been tested in

Ž w x.a variety of experiments see for example Ref. 2
and remains to date the only combination of C, P and
T that is observed as an exact symmetry in nature.
On the other hand there is some theoretical progress
related to the string theory which may allow a
consistent theoretical framework including violation

w xof CPT to be constructed 3 .
w x 0In Refs. 2,4 the mass difference between K and

0K was evaluated as
2 1< <2 Dm h f q f yfŽ .qy 00 SW3 3

0 0m ym f .K K sin fŽ .SW

1Ž .
We recall that f and f are the phases of theqy 00

parameters h and h describing CP violation inqy 00
Ž < < < < < <.the two-pion decay channel h s h f h ;qy 00

Ž . Ž .f superweak phase 'arctan 2 DmrDG , DmsSW
Ž .m ym , DGsG yG , where m m and GL S S L L S L

Ž .G are the mass and decay width, respectively, ofS
Ž . Ž .K K . Here we would like to stress that Eq. 1L S

contains the assumption of CPT invariance in the
decay of neutral kaons and neglects some of the
contributions from decay channels other than the
two-pion 1.

1 w xHowever, see L. Wolfenstein in Ref. 2 , p.107. The relation
between f ,f and f has a long history since the seminalqy 00 SW

w xpaper of T.T. Wu and C.N. Yang 5 . For a more recent critical
w xdiscussion see Ref. 6 .

In the present paper we overcome these limita-
tions. We take advantage of the values of the CPT-

Ž . Ž .violation parameters Re d and Im d , obtained re-
Žcently by CPLEAR making use of the unitarity or

. w x Ž .Bell–Steinberger relation 7 . The value of Im d

results from a variety of measurements for pionic
and semileptonic decay channels, many of which are

Ž .from CPLEAR, while the value of Re d results
essentially from the CPLEAR measurement of

w xsemileptonic decay rate asymmetries 8 . In addition
0 0to the mass difference between K and K , owing to

Ž .the Re d measurement, we are also able to evaluate
for the first time the decay-width difference, and
subsequentially analyse it in terms of individual
CPT-violating decay amplitudes.

2. The neutral-kaon phenomenology

A neutral-kaon state can be written as a superposi-
0 0< : < :tion of K and K , the eigenstates of the strong

and electromagnetic interactions, with strangeness
q1 and y1, respectively

0 0< : < : < :C t sa t K qb t K . 2Ž . Ž . Ž . Ž .
As weak interactions do not conserve strangeness,

0 0< : < :K and K undergo strangeness oscillations as
well as decays. The time evolution of the state in Eq.
Ž .2 is described by

d
Csyi LC ,

dt

0 0 0 0L L iK K K K
L' 'My Gž /0 0 0 0L L 2K K K K

0 0 0 0 0 0 0 0M M G GiK K K K K K K K
' y ,ž / ž /0 0 0 0 0 0 0 0M M G G2K K K K K K K K

3Ž .
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where M and G are Hermitian matrices known as
the mass and decay matrices. The eigenvalues corre-

< : < :sponding to the physical states K and K areL S
i < <0 0l sm y G , with Dmf2 M and DGL ,S L ,S L ,S K K2

< <0 0f2 G . The symmetry properties of the matrixK K

elements are shown in Table 1, together with the
parameters e and d commonly used to describe, in
the time evolution, the breaking of the symmetries

w x 2CPT, T and CP 8–12 :

0 0 0 0 0 0 0 0L yL L yLK K K K K K K K
es , ds . 4Ž .

2 l yl 2 l ylŽ . Ž .L S L S

2.1. CPT test of the mixing matrix

The parameter d ,

p
< <ds d exp i f yf y ,SW CPTž /2

with

0 0 0 01 G yGŽ .K K K K
f sarctan ,CPT ž /0 0 0 02 M yMŽ .K K K K

w xis conveniently represented in the complex plane 11
Ž .by the projections along the f axis d and itsSW I

Ž .normal d :H

0 0 0 01 G yGK K K K
d s ,I 24 DG

2Dm q( ž /2

0 0 0 01 M yMK K K K
d s . 5Ž .H 22 DG

2Dm q( ž /2

The parameters d and d can be expressed asI H
Ž . Ž .functions of the measured quantities Re d , Im d

and f asSW

d sRe d cos f q Im d sin f ,Ž . Ž . Ž . Ž .I SW SW

d syRe d sin f q Im d cos f , 6Ž . Ž . Ž . Ž . Ž .H SW SW

2 w xThe parametrizations presented in Ref. 12 are equivalent to
ours but formulated in a slightly different notation.

Table 1
The properties of the L-matrix elements under the assumption of
CPT, T and CP invariance and the parameters which describe the
breaking of these symmetries

Symmetry L-matrix properties Parameters

0 0 0 0CPT L s L dK K K K
< < < <0 0 0 0T L s L eK K K K

0 0 0 0CP L s L , e se yd ,K K K K L
< < < <0 0 0 0L s L e se qdK K K K S

0 0and allow in turn the K –K decay-width and mass
differences to be determined as

2 DG
0 0 0 0G yG sd ,K K K K I cos fŽ .SW

DG
0 0 0 0M yM sd . 7Ž .K K K K H cos fŽ .SW

0 0Thus the evaluation of the K –K mass and decay-
width differences is straightforward, once the CPT-

Ž . Ž .violation parameters Re d and Im d are known.

2.2. CPT test of the decay amplitudes

0 0Ž .K K decays to a specified final state f occur
Ž .with an amplitude A A . By assuming unitarityf f

w x13 , the elements of the G-matrix are given by the
0 0Ž .K K decay amplitudes to real final states f , with

) )

0 0 0 0G s A A , G s A A ,Ý ÝK K f f K K f f

) )

0 0 0 0G sG s A A . 8Ž .ÝK K K K f f

The elements of the M-matrix contain instead also
the transition amplitudes to all virtual states. This
implies that CPT violation could manifest to first
order in the M-matrix, but only to a higher order in
the G-matrix.

The decay amplitudes A and A are parametrizedf f

to account for selection rules based on discrete sym-
Ž .metries, isospin changes for pionic decays or the

Ž .DSsDQ rule for semileptonic decays . For the T
Ž .transition matrix elements of two-pion final states

w xwe write 10–12

² < < 0: i d Ipp , I T K s A qB e ,Ž .I I

0 ) ) i d I² < < :pp , I T K s A yB e , Is0, 2 ,Ž .I I

where A and B are CPT symmetric and antisym-I I

metric amplitudes, respectively, and d are the ppI

phase-shifts of channels with total isospin I. For the
three-pion final states, the isospin values range from
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Table 2
w xExperimental values of K and K parameters 2,7 used in theS L

present analysis

Parameter Value
y1 0 y1Ž .1rG 0.8934"0.0008 =10 " sS

y8 y1Ž .1rG 5.17"0.04 =10 " sL
7 y1Ž .DG 1117.4"1.0 =10 " s

y1 5Ž .s 7.355"0.007 =10 GeV
7 y1Ž .Dm 530.2"1.5 =10 " s

y1 5Ž .s 3.490"0.010 =10 GeV

w x0 to 3, with Is1 being the most favoured one 14 .
For the purpose of this paper we write simply

² < < 0: id1ppp , I T K s A qB e ,Ž .1 1

0 ) ) i d1² < < :ppp , I T K s A yB e .Ž .1 1

Finally, four decay amplitudes describe semilep-
w xtonic decays 11,12 :

² q y < < 0:ll p n T K saqb ,
y q 0 ) )² < < :ll p n T K sa yb ,
y q 0² < < :ll p n T K scqd ,
q y 0 ) )² < < :ll p n T K sc yd ,

" " " Ž .with ll se , m . Here, Re a is T and CPT
symmetric and all imaginary parts are T violating; c
and d describe DSsyDQ decays, and b and d are
CPT violating.

3. Results on mass and decay-width differences

Ž .CPLEAR has recently obtained for Re d and
Ž . w xIm d the values 7

Re d s 2.4"2.8 =10y4 ,Ž . Ž .
Im d s 2.4"5.0 =10y5 , 9Ž . Ž . Ž .
with a correlation coefficient of 5%. Using these
values and the values for DG and Dm of Table 2,

Ž .we obtain from Eq. 6

d s 1.9"2.0 =10y4 ,Ž .I

d s y1.5"2.0 =10y4 , 10Ž . Ž .H

Ž .and subsequently from Eq. 7
y18

0 0 0 0G yG s 3.9"4.2 =10 GeV ,Ž .K K K K

y18
0 0 0 0M yM s y1.5"2.0 =10 GeV ,Ž .K K K K

11Ž .

0 0Fig. 1. The K –K decay-width versus mass difference. The 1s ,
2s and 3s ellipses are also shown.

with a correlation coefficient of y0.95. Fig. 1 shows
the error ellipses corresponding to 1s , 2s and 3s .
Our result on the mass difference is a factor of two
better than the one obtained with a similar calcula-

w xtion in Ref. 15 . We note that the improvement is
Ž .mainly due to Re d being now known with a

Ž .smaller error, see Eq. 9 .
Ž .The error of Re d becomes even smaller if we

assume CPT-invariant decay amplitudes, that is
Ž . Ž .0 0 0 0G sG or, equivalently, Re d syIm dK K K K

Ž . Ž .= tan f . In this case Re d can be determinedSW
Ž .by Im d and the parameter d becomes d sH H

Ž . Ž . 0 0 0 0Im d rcos f . The results for M yMSW K K K K

are shown in Table 3 depending on the values for
Ž .Im d which are obtained from the unitarity relation

. w x .under different conditions: a no restriction 7 , b
equal CP-violation parameters for the decay to

0 0 0 q y 0 w x .p p p and to p p p , i.e. h sh 7 , c000 qy0

only the pp decay channel contributes to the unitar-
ity relation.

Table 3
0 0 0 0Mass difference assuming G y G s0: values and modu-K K K K

Ž . Ž .lus limits at 90% CL for different values of Im d see text

Ž . Ž . < <0 0 0 0 0 0 0 0Condition Im d M y M M y MK K K K K K K K
y5 y19 y19w x w x w x10 10 GeV 10 GeV

.a 2.4"5.0 3.3"7.0 F12.7

.b y0.5"2.0 y0.7"2.8 F4.8

.c y0.1"1.9 y0.1"2.7 F4.4
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4. Remark on the method

We shall now compare the method outlined above
Ž .with the one leading to Eq. 1 . With the notation of

Section 2 for the decay amplitudes, we obtain from
w xthe h and h definitions 11qy 00

Im A Re BŽ . Ž .0 0 X
h seydq i q qe ,qy ž /Re A Re AŽ . Ž .0 0

12aŽ .
Im A Re BŽ . Ž .0 0 X

h seydq i q y2e ,00 ž /Re A Re AŽ . Ž .0 0

12bŽ .
1 Re A Im A Im AŽ . Ž . Ž .2 2 0X iŽd yd .2 0e s e i yž /' Re A Re A Re AŽ . Ž . Ž .2 0 2 0

Re B Re BŽ . Ž .2 0
q y . 12cŽ .ž /Re A Re AŽ . Ž .2 0

Ž .The set of Eqs. 12 is visualized in Fig. 2. For this
representation we have used the T-violation parame-

Ž .0 0ter e sey i Im G rDG , which has a phaseT K K
w xequal to f 11 . We have also introduced theSW

XŽ .0 0quantity Dfs Im G rDG which stands for oneK K

half the phase of the off-diagonal G-matrix element
X

0 0G corresponding to neutral kaons decaying toK K
Ž .channels other than two-pion Is0 state. From

Ž . Ž . Ž .Eqs. 12 we obtain expressions for Im d , Re d

Ž .and, together with Eq. 6 , for d :H
2 1< <Im d scos f h f y f y fŽ . Ž . Ž .SW qy SW qy 003 3

qDf , 13aŽ .
2 1< <Re d sysin f h f y f y fŽ . Ž . Ž .SW qy SW qy 003 3

Re BŽ .0
q , 13bŽ .

Re AŽ .0

2 1< <d s h f y f y f qDfcos fŽ .Ž .H qy SW qy 00 SW3 3

Re BŽ .0
y sin f . 13cŽ . Ž .SWRe AŽ .0

< < < < < <Here, use is made of the fact that h f h f e .qy 00 T

This approximation is no longer appropriate when
computing d for which we obtainI

< < < <d f e y h qDfsin fŽ .I T qy SW

Re BŽ .0
q cos f . 14Ž . Ž .SWRe AŽ .0

Fig. 2. CP-, T- and CPT-violation parameters when a neutral kaon
decays to pp .

< <Owing to the lack of precise information on e yT
< < Žh , one evaluates only d and the mass differ-qy H

. Žence , without any explicit consideration of d andI
.the decay-width difference . Finally, when the terms

Ž . Ž . 3containing Df and Re B rRe A are neglected0 0
Ž . Ž . Ž . .Eqs. 13 , 7 reduce to Eq. 1 and to case c of

< <0 0 0 0Table 3, leading to the limit M yM F4.4K K K K
y19 Ž .=10 GeV 90% CL .

With a similar approach, one could also simply
Ž .use Eqs. 12 and neglect as well, in addition to Df

Ž . Ž . Xand Re B rRe A , the projection of e along the0 0
X 1 < <Ž .normal to the f axis, e s h f yf –SW H qy qy 003

which means to neglect the real part of both the
CPT-violating amplitudes B and B , see Section 5.0 2

This procedure leads to a slightly lower limit for
< < < <0 0 0 0 0 0 0 0M yM , that is M yM F4.0=K K K K K K K K

y19 Ž .10 90% CL . For these evaluations we have used
w xthe values entered in our unitarity analysis 13 , that

< < Ž . y3 Ž .is h s 2.283 " 0.025 =10 , f yf sqy 00 qy
Ž . Ž . w xy0.3 " 0.8 8 and f s 43.6 " 0.6 8 2,18 .qy

3 The measurements of CPLEAR in semileptonic and 3p sec-
tors have allowed to set stringent limits on Df. If one assumes
the Is1 decay amplitude to be dominant in the three-pion decay

Ž . y6so that h sh , we obtain Df s y5.8 "8.1 =10 and000 qy0
Ž . y5 Ž . y5d s y0.4"2.7 =10 , while d s y0.0"2.6 =10 forH H

Df s0. If one uses the measured value for h , the error on Df000

increases by an order of magnitude and becomes dominant in Eq.
Ž . Ž . Ž .13b , provided that Re B rRe A can be neglected. Without0 0

this last restriction the error of d becomes as large as f2=H
10y4 , see Section 5.
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5. Results on CPT-violating decay amplitudes

The limit on the decay-width difference obtained
Ž .from Eq. 11 represents a global evaluation of a

possible CPT violation in the decay. However, we
may also give some information on the individual
CPT-violating decay amplitudes.

Ž .For the semileptonic decays, the parameters Re y
Ž . )and Re x , ysybra and x syd ra, describ-y y

ing CPT violation in DSsDQ and DS/DQ transi-
tions, respectively, and their sum have already been

w xdetermined in Ref. 7 ,

Re y s 0.3"3.1 =10y3 ,Ž . Ž .
Re x s y0.5"3.0 =10y3 ,Ž . Ž .y

Re yqx s y2.0"3.0 =10y4 .Ž . Ž .y

For the pionic decays, only the parameters
Ž . Ž .Re B rRe A are estimated. With no attempt toI I

make a global fit to the data, to perform this estima-
0 0tion we express the K –K decay-width difference,

according to its definition, as

0 0 0 0G yG Re B A Re BŽ . Ž .K K K K 0 2 22< <s q
2 G Re A A Re AŽ . Ž .S 0 0 2

G Re BŽ .L 1
q BR K ™3pŽ .L

G Re AŽ .S 1

y2BR K ™ llpn Re y ,Ž .Ž .L

15Ž .
Ž .where BR stands for branching ratio. In Eq. 15 , the

Ž .left-hand side is determined from Eq. 11 to be
Ž . y42.6"2.9 =10 . On the right-hand side, the last
term is estimated to be f5=10y6 with the values

w x Ž .of the branching ratio from Ref. 2 , Re y as given
Ž . w xabove, and the measured value of Re h 14qy0

Ž . Ž .considered as an upper limit for Re B rRe A .1 1

We are then left with the possible contributions to
the decay-width difference from the two-pion decay
channel.

Ž . Ž . w xSince d yd sy 42"4 8 16 and f s2 0 SW
Ž . Ž .y 43.50"0.08 8 with the values of Table 2 , we

Ž .obtain with a good approximation from Eqs. 12
1 < <f yf hŽ .00 qy qy3

1 Re A Re B Re BŽ . Ž . Ž .2 2 0
s y . 16Ž .' Re A Re A Re AŽ . Ž . Ž .2 0 2 0

Ž . Ž . < <We estimate Re A rRe A f A rA f2 0 2 0
w x Ž . Ž .0.04479 " 0.00020 17 , with Re B rRe A and2 2

Ž . Ž . < <Re B rRe A < 1; we also take h s0 0 qy
Ž . y 3 Ž .2.283 " 0.025 = 10 and f y f s00 qy
Ž . w xy0.3 " 0.8 8 2,18 . By using these values for

Ž . Ž . < < Ž .Re A rRe A , h and f yf we obtain2 0 qy 00 qy
Ž .from Eq. 15

Re B Re BŽ . Ž .2 0
0.002= q

Re A Re AŽ . Ž .2 0

s 2.6"2.9 =10y4 ,Ž .
Ž .and from Eq. 16

Re B Re BŽ . Ž .2 0 y4y s y1.3"3.4 =10 ,Ž .
Re A Re AŽ . Ž .2 0

hence,

Re BŽ .0 y4s 2.6"2.9 =10 ,Ž .
Re AŽ .0

Re BŽ .2 y4s 1.3"4.5 =10 .Ž .
Re AŽ .2

6. Conclusion

We have analysed in detail possible CPT-violat-
0 0ing contributions both to the K –K mixing matrix

0 0and to the individual amplitudes for K and K
decays to pp and to llpn . Without any assumption,

0 0the K –K mass and decay-width differences are
shown to be consistent with CPT invariance within a
few 10y18 GeV. The measurement of the decay-width
difference relies mainly on the CPLEAR measure-
ments of the semileptonic decay rates and the param-

Ž . w xeter Re d 8 , also allowing possible cancellation
effects to be disentangled. The ratio between CPT-
violating and CPT-invariant amplitudes is shown to
be smaller than a few times 10y3 –10y4 for a num-
ber of cases.
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